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We report on the forced wetting of a liquid crystal on a polymer fiber in the nematic and isotropic phase

under partial wetting conditions. As the cylindrical fiber exits from the fluid reservoir, the fluid forced-

coated on the fiber is immediately broken into droplets due to capillary-driven instability, even in the

wetting conditions. For the nematic fluid, the initial film thickness, h, before breakup, scales almost

linearly with the capillary number, Ca, as h � Ca0.94, while h � Ca2/3 for the isotropic fluid, as predicted

for a Newtonian fluid. The amount of the fluid coated on a fiber is larger in the nematic phase than in

the isotropic phase at a given velocity within the velocity range studied. Analysis using Ericksen-Leslie

equations shows that Frank elasticity plays no role in increasing the coating thickness for the nematic

fluid, while viscous anisotropy is the source of observed rescaling, h � Ca. This non-classical scaling is

attributed to the deformation-stress cross-coupling and the existence of extensional kinematics in the

meniscus formation region.
Introduction

In many industrial applications it is necessary to coat a solid

substrate with a fluid for a variety of reasons.1–6 This is usually

accomplished by dragging the solid object through the fluid of

interest. Here we refer to such processes as forced wetting of the

solid substrate, irrespective of whether the fluid is a wetting or

a nonwetting fluid for the substrate. In such a process, it is

obvious that the thickness of the fluid coating will depend on the

velocity at which the solid substrate is withdrawn. At zero

velocity the film thickness is zero (where we ignore the possibility

of a thin wetting film), and at infinite velocity it will be zero as

well since the fluid does not have enough time to form a coating

and/or the air is entrapped in the interface. Thus a maximum

wetting speed naturally enters the problem of forced wetting.7–12

We are interested in gaining an understanding of how the fluid

film thickness varies with an increase in velocity. In particular, we

confine our attention to the special case of the solid substrate

having a cylindrical geometry and where the fluid is an aniso-

tropic fluid with long range orientational order. The wetting and

spreading characteristics of nematic fluids on planar substrates

have been extensively studied,13–19 while the behavior on cylin-

drical objects has hardly been studied. In this letter, we report on

the forced spreading of a nematic fluid on a polypropylene fiber,

both in its ordered and disordered phase.

The wettability of a dry ideal solid by a liquid is determined by

the spreading coefficient, S, which is defined as S ¼ gs � gsl � g,
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where gs, gsl, and g are surface energy of the substrate, substrate–

liquid interfacial tension, and surface tension of the liquid,

respectively.11,20 The spreading coefficient is the difference

between the surface energy of the dry solid surface, gs, and the

interfacial energy of a wetted surface, gsl + g. When S > 0, a fluid

drop will spontaneously spread on a planar surface because the

wetted surface has a lower free energy than the dry surface, and

this is referred to as total wetting or spontaneous wetting. When

S < 0, the fluid partially wets the surface such that there is a finite

contact angle, q, with S ¼ g (�1 + cos q).

Wetting of cylindrical substrates, or fibers, by viscous fluids

differs from that of planar substrates of the same material. This is

due to the fact that the curvature of the fiber causes capillary

pressure imbalance at two interfaces of the annular fluid film,

namely the substrate–fluid and the air–fluid interfaces. An

important consequence is that fiber wetting occurs only when the

spreading parameter S is greater than a critical positive value,

Sc,
21–27 while wetting on planar substrates occurs when S > 0. In

many cases, this annular film is quickly broken into droplets21–

23,26,28 due to Rayleigh instability.29 Under the same conditions,

the film thickness before breakup is greater for fibers than for

planar substrates.30

Nonslip boundary conditions coupled with the finite viscosity

of the fluid lead to the result that the fluid elements near the

solid must move at the same velocity as that of the solid,

forming a thin coating on the fiber. However, this motion results

in a deformation of the fluid–air interface, which is opposed by

surface tension forces. Hence, viscous and capillary forces

oppose each other, thereby naturally introducing a force balance

defined by the ratio between the two, the so-called capillary

number, Ca (Ca ¼ hV/g), where h is the fluid viscosity. It is

expected that the initial film thickness, h, can be expressed as

h � l f(Ca), where l is some static length which will depend on

the geometry of the solid. Landau, Levich and Derjaguin were

the first to correctly predict that the film thickness at low

withdrawal velocity will scale as h � Ca2/3 for Newtonian
Soft Matter, 2009, 5, 2277–2280 | 2277



Fig. 2 The reduced thickness, h/r, of the nematic E7 on polypropylene

fiber at room temperature as a function of the capillary number. The

thickness increases much faster than the LLD law predicts.
fluids.31,32 This is the well-known LLD law for free meniscus

coating.

Nematic liquid crystals have long-range orientational order

without positional order, and the average molecular orientation

is given by a unit vector, the director n. The fiber wetting by

nematics involves the determination of director orientation in

annular spaces.33,34 For nematic liquid crystals, the Frank elas-

ticity due to orientation gradients may have to be taken into

account, depending on their significance in comparison to the

viscous stress.

Experimental section

We have used a eutectic liquid crystal mixture, E7, in the nematic

phase (at room temperature) and in the isotropic phase (at 100
�C). E7 is composed of K15 (4-pentyl-40-cyanobiphenyl), K21 (4-

heptyl-40-cyanobiphenyl), M24 (4-octyloxy-40-cyanobiphenyl),

and T15 (4-pentyl-40-cyanoterphenyl), and is a homogenous

mixture (single thermodynamic phase) with a single nematic–

isotropic transition temperature of 60–61 �C.35,36 A poly-

propylene fiber of diameter 200 mm is dragged through a Teflon

tube reservoir (inner radius ¼ 0.24 cm, length ¼ 1.5 cm) con-

taining E7. The fiber passes through the tube in the horizontal

direction at a constant velocity, V, and the mass of this fluid

reservoir is continuously recorded as a function of time, t. As the

fiber moves through the reservoir, the mass of the fluid uptake by

the fiber, DW, increases linearly with time. As mentioned above,

the annular liquid film forced-wet breaks up, but the initial film

thickness, h, can be easily computed using the mass balance

equation:

h ¼ �rþ
�

r2 þ DW=Dt

prV

�1=2

;

where r and r are the fiber radius and fluid density.

Results and discussion

The forced wetting of E7 nematic liquid crystal on PP fiber

quickly reaches the steady state and the weight pickup is linear in

time, as shown in Fig. 1 for several withdrawal velocities. We
Fig. 1 The amount of the nematic E7 liquid crystal picked up by

a polypropylene fiber at various velocities (as indicated in the graph in cm

s�1) at room temperature.
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stress here that the thickness, calculated using aforementioned

mass balance, is just the initial thickness, largely because the

annular fluid is unstable and breaks up by the surface-tension-

driven ‘‘Rayleigh Instability’’. We do not report the dynamics of

this instability in this paper; this will be discussed elsewhere.

Fig. 2 is a bilogarithmic plot of the reduced thickness, h/r, of

the nematic E7 fluid as a function of capillary number, corre-

sponding to velocities of the fiber ranging from 2 to 25 cm s�1.

The fluid film thickness is seen to be much larger and to scale with

a higher exponent (h/r�Ca0.94) than predicted by the LLD law of

h/r � Ca2/3. It must be emphasized that the viscosity of the

nematic fluid is expected to be independent of the shear rate

(2560–3180 s�1) in the range of fiber withdrawal velocities

studied.

On the other hand, when the fluid is heated to 100 �C by an

infrared heater to induce phase transition of E7 from nematic to

isotropic state, the dependence of the thickness on the velocity

exactly follows the LLD prediction, as shown in Fig. 3.

To determine the driving force behind the new scaling law in

nematic phase, the anisotropic viscoelastic nature of nematic

liquid crystals must be taken into account. Anisotropic elasticity,

generally known as Frank elasticity, is due to three modes of
Fig. 3 The reduced thickness, h/r, of the E7 fluid on polypropylene fiber,

both in nematic phase (at 25 �C) and isotropic phase (at 100 �C) as

a function of velocity. The E7 at isotropic phase follows the prediction

by LLD.

This journal is ª The Royal Society of Chemistry 2009



orientation gradient, namely splay, bend, and twist. Anisotropic

viscosity implies that the viscosity is an orientation-dependent

fourth-order tensor, and even a simple shear flow can generate

different dissipation according to the nematic orientation.

Determining the nature of driving force behind the new scaling

law requires first assessing the relative importance of elasticity

and viscosity, and then analyzing the specific nature of the

anisotropy. The relative strength of viscous to elastic stresses is

given by the Ericksen number,37–39 Er, as Er ¼ hVh/K,40 where K

is a characteristic Frank elastic constant. Using characteristic

value of K � 10�7 dyne,41 Er ¼ 103–105 for the experimental

velocity and film thickness range. Since the Ericksen number is

greater than 1, orientation-dependent elasticity is not the source of

the new scaling. However, we need to take orientation-dependent

viscosity into consideration, as discussed below.

The non-viscometric kinematics of forced wetting, as shown

in Fig. 4, consists of a non-homogeneous mixture of shear and

extensional deformations. For simplicity we analyze the problem

in rectangular coordinates. Assume that a fiber of radius r

moves in the x direction with velocity V, and that h is the film

thickness in the y direction that forms in a length given by l. The

characteristic velocity in the y direction is U. Assuming incom-

pressibility, it follows that V/l � U/h and hence U � Vh/l.

Describing forced wetting with a two dimensional shear-exten-

sional flow, the symmetric traceless rate of deformation tensor A

may be expressed in the extensional deformation term, Axx, and

the shear deformation term, Axy. From the geometry of forced

wetting, the deformations scale as: Axx� V/l, Ayx¼ Axy� V/h +

U/l � V/h + Vh/l2, Ayy � U/h � V/l.

Given the scales of the kinematics, the nature of generated

viscous stresses is determined by the structure of the fluid.

Newtonian fluids generate shear stresses with shear deformations

and normal stresses with extensional deformations, and therefore

exhibit no cross-coupling between the type of deformation and

the type of stress.

On the other hand, the anisotropic viscous nature of nematic

liquid crystals allows for cross-couplings between stress and

deformation, such that shear may generate shear and normal

stresses, while extensional flow generates shear and normal

stresses. The simplest theory that captures anisotropic viscous

behavior is the following transversely isotropic fluid (TIF)

Ericksen model:37–39,42,43

t ¼ h1A:nnnn + 2h2A + h3(A.nn + nn.A) (1)

where t is the symmetric stress tensor, and the h1, h2, and h3 are

orientation-dependent viscosities. Note that for a Newtonian
Fig. 4 A sketch of the dynamic meniscus, where h is the thickness of the

liquid layer and l is the length over which the film is formed at a given

velocity.
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fluid h1 ¼ h3 ¼ 0. The relevant stress tensor components are the

shear stress tyx ¼ txy, and the normal stresses txx and tyy. For the

TIF fluid, these are given by

txy ¼ tyx ¼ [h1(nx
2 � ny

2)nxny]Axx + [2h1nx
2ny

2 + 2h2 + h3]Axy(2a)

txx ¼ [h1(nx
2 � ny

2)nx
2 + 2h2 + 2h3nx

2]Axx

+ [2h1nx
3ny + 2h3nxny]Axy (2b)

tyy ¼ [h1(nx
2 � ny

2)ny
2 � 2h2 � 2h3ny

2]Axx

+ [2h1nxny
3 + 2h3nxny]Axy (2c)

where we have used Axx ¼ �Ayy and Axy ¼ Ayx. The above

equations show that, for this complex fluid, shear deformation

contributes to shear and normal stresses and extensional defor-

mation also contributes to shear and normal stresses, clearly

identifying the stress-deformation coupling.

Integrating the linear momentum balance in the y direction

gives:

�
tyy � p

�
�
�
tyy � p

����
h
�
ðh

y

txy;x dy ¼ 0 (3)

Since, at y¼ h, the normal stress tyy is balanced by the Laplace

pressure, (tyy � p)|h ¼ g(d2h/dx2), the pressure and its axial

gradient are:

�px ¼ tyy;x þ ghxx þ
ðh

y

txy;x dy (4)

Replacing the pressure gradient into the x-component of the

linear momentum balance equation gives:

�g
v3h

vx3
¼ vtyx

vy
þ vN1

vx
þ v

vx

ðh

y

txy dy (5)

where N1 (¼ txx � tyy) is the first normal stress difference.

Capillary forces are balanced by shear and normal stresses. The

normal stress forces arise through axial gradients while shear

stress forces through transverse and axial gradients.

The characteristic values of these stresses are obtained by using

V as the velocity scale, h as the length scale in the thickness (y)

direction, l as the length scale in the flow (x) direction, and the

continuity equation (U � Vh/l):

txy ¼ a1*(V/l) + a2*(V/h) + a3*(Vh/l2) (6)

N1 ¼ a4*(V/l) + a5*(V/h) + a6*(Vh/l2) (7)

where the coefficients {ai*; i ¼ 1–6} are the characteristic

viscosity functions of the bare viscosities {h1,h2,h3}. The cross-

couplings are introduced by a1*, a5*, a6*, and from equations (2)

it is seen that they do not vanish unless the unlikely conditions nx

¼ 0 or ny ¼ 0 hold everywhere. For Newtonian fluids, the cross-

couplings are always zero. The characteristic values of the force

balance equation in the flow direction are:

gh/l3 ¼ a2*(V/h2) + a145*(V/lh) + a23*(V/l2) +

a16*(Vh/l3) + a3*(Vh2/l4) (8)

where a145* ¼ a1* + a4* + a5* and a23* ¼ a2* + a3*, and a16* ¼
a1* + a6*. The film development length l is found from the
Soft Matter, 2009, 5, 2277–2280 | 2279



balance between the two curvature-induced capillary pressures,

[g/(r + h)] � (gh/l2)¼ 0, and yields l ¼ [h(r + h)]1/2. More general

models may also take into account the effect of normal stress on

l, but for the present case we use the simplest possible model.

Introducing the capillary number and the expression for l in

equation (8), we find for h/r� 1:

Ca ¼ (h/r)3/2[a145*(h/r)1/2 + a23*(h/r) + a2*

+ a16*(h/r)3/2 + a3*(h/r)2]�1 (9)

A number of observations follow from equation (9). First, for

low-molar mass Newtonian fluids, the equation (9) goes back to

the LLD law, because stress-deformation cross-couplings do not

exist (a1* ¼ a5* ¼ a6* ¼ 0), and because normal stresses from

extensional deformations are negligible (a4* ¼ 0). Second, for

nematic liquid crystals, the corresponding coefficients are not zero

since cross-couplings and normal stresses also contribute, and

hence the LLD law is not obeyed. Third, the viscosity functions

a145*, a23*, and a16* do not affect the power law scaling.

Rearranging equation (9) gives equation (10), where the

coating thickness scales linearly with the capillary number.

Ca ¼ (h/r)3/2[a145*(h/r)1/2]�1[1 + .]�1 ¼ a145*h/r + . (10)

Thus, the Ericksen model is consistent with the observed

scaling. The power law scaling arises from the stress-deformation

laws for nematic liquid crystals, which introduce cross-couplings

and normal stresses not observed in Newtonian materials.

Conclusions

Forced wetting experiments have been carried out and

measurements of coating thickness of a typical nematic liquid

crystal on a polymeric fiber show that the classical LLD scaling

of the coating thickness with the capillary number does not hold

for anisotropic fluid. The measured dependence for E7 is h/r �
Ca0.94 in the nematic phase, while it is h/r � Ca2/3 in the isotropic

state as predicted by LLD. Analysis of the experiment using

classical liquid crystal physics shows that orientation elasticity

plays no role in the exponent’s rescaling. Viscous anisotropy in

nematic liquid crystals is shown to be the source of rescaling, h/r

� Ca, through the presence of deformation-stress cross-coupling

and through the existence of extensional kinematics in the

meniscus formation region.
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